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STEADY-STATE INVESTIGATION OF LAMINAR-FLOW INSTABILITY PROBLEM RESULTING 

FROM RELATIVELY LARGE INCREASES I N  TEXWERATURE O F  NORMAL 

HYDROGEN GAS FLOWING I N  SMALL DIAMETER HEATED TUBE 

by George E .  Turney, John M. S i ~ t h ,  and Albert J .  Juhasz 

L e w i s  Research Center 

During c e r t a i n  phases of nuclear rocket operation, namely s t a r t u p  and 
shutdown, flow of hydrogen gas i n  the  reac tor  core passages may change from 
turbulent t o  laminar flow as a r e s u l t  of f l u i d  temperature increases i n  the  
passages. Experimental d a t a  required t o  va l ida t e  assumptions used t o  estimate 
the  pressure-drop c h a r a c t e r i s t i c s  of heated flow channels operating i n  (or 
near) t h e  laminar-turbulent flow t r a n s i t i o n  region appear t o  be  lacking. 

This r epor t  presents r e s u l t s  from an experimental invest igat ion conducted 
t o  determine t h e  pressure-drop cha rac t e r i s t i c s  of normal hydrogen gas flowing 
through an e l e c t r i c a l l y  heated t e s t  sec t ion  operating i n  t h e  t r a n s i t i o n  region 
of laminar-turbulent flow. The experimental invest igat ion w a s  conducted a t  
average operating heat f l u x  values of 0.320, 0.1185, and 0.640 B tu / ( sec ) ( f t ' ) .  
The Reynolds numbers (based on i n l e t  conditions) ranged from approximately 
600 t o  5400, and the  r a t i o  of o u t l e t  t o  i n l e t  f l u i d  temperatures ranged from 
approximately 2 . 5  t o  11.0. The t e s t  sec t ion  used i n  these  experiments w a s  a 
Nichrome-V tube with an in s ide  diameter of 0.116 inch and a heated length of 
approximately 50 inches. 

From t h e  experimental da ta ,  a steady-state curve of pressure drop as a 
function of i n l e t  Reynolds number w a s  obtained f o r  each operating hea t  f l u x  
value. These curves a re  concave upward; t he  i n l e t  Reynolds number correspond- 
ing t o  t h e  point of minimum pressure drop ranged from approximately 1800 a t  
t h e  minimum operating hea t  f l ux  of 0.320 Btu/( see)  (ft2) t o  2300 a t  t h e  m a x i -  
mum heat  flux of 0.640 Btu/( see) ( f t 2 ) .  

A comparison w a s  made between t h e  experimental and ana ly t i ca l ly  calculated 
values of pressure drop f o r  several of t h e  t e s t  runs.  With t h e  exception of a 
few points,  the experimental and calculated pressure drops f o r  a l l  t e s t  runs 
agreed within +10 percent.  



INTRODUCTION 

The e f f i c i e n t  appl ica t ion  of nuclear power f o r  rocket propulsion requi res  
a compact high-power-density r eac to r  i n  which t h e  propel lant  gas (hydrogen) i s  
heated t o  extremely high temperatures. I n  t h e  homogeneous reac tor  core proposed 
for t h e  nuclear rocket, t h e  heat generated i n  t h e  s o l i d  f u e l  element a r ray  i s  
removed by the  hydrogen propel lant  t h a t  flows a x i a l l y  through hundreds of s m a l l -  
diameter, p a r a l l e l  coolant passages i n  the  core. A t y p i c a l  f u e l  element coolant 
passage design f o r  t h e  nuclear rocket core i s  depicted i n  reference 1. 

I n  a p a r a l l e l  flow system of the  type described i n  reference 1, the  s t a t i c  
pressure drop across each flow channel i n  the  core i s  s e t  by t h e  i n l e t  and e x i t  
plenum pressures;  t h a t  is ,  the  s t a t i c  pressure drop across  a l l  flow channels 
must be i d e n t i c a l  and equal t o  the  pressure d i f fe rence  from i n l e t  t o  e x i t  
plenum. I n  such a system, nonuniform flow d i s t r i b u t i o n s  among t h e  hundreds of 
p a r a l l e l  coolant passages could r e s u l t  from a v a r i e t y  of conditions,  (e .g . ,  
dimensional d i f fe rences  among the  passages, nonuniform s p a t i a l  heat generation 
r a t e s ,  e t c . )  and could place a ser ious  l i m i t  on the  design performance of t he  
nuclear propulsion system. 

During c e r t a i n  phases of nuclear rocket operation, flow of hydrogen gas 
through the  p a r a l l e l  passages of the  reac tor  core may lead  t o  any one of  sever- 
a l  d i s t i n c t  flow problems. For steady-state  operation with no heat addi t ion,  
t he  pressure drop i n  the  passages i s  an increasing funct ion of t he  flow r a t e  
i n  both the l a m i n a r  and turbulent  flow regimes; t h a t  i s ,  t he  pressure-drop 
flow-rate curve has a pos i t ive  slope i n  the  laminar and turbulen t  flow regimes. 
For laminar flow with constant heat addi t ion,  however, the  slope of t h e  steady- 
s t a t e  pressure drop - flow r a t e  curve may be e i t h e r  pos i t i ve  or negative,  
depending on the  value of the  ou t l e t - to - in l e t  f l u i d  tempera ture . ra t io  i n  the  
heated passage. The ou t l e t - to - in l e t  f l u i d  temperature r a t i o  at which the  slope 
of t he  laminar-flow pressure-drop flow-rate curve changes from pos i t ive  t o  
negative i s  herein termed the  " c r i t i c a l  f l u i d  temperature r a t i o . "  
of ou t l e t - to - in l e t  gas temperature r a t i o  grea te r  than c r i t i c a l ,  t he  steady- 
s t a t e  pressure-drop flow-rate curve exhib i t s  a negative res i s tance  t o  flow 
( i . e . ,  a negative s lope ) .  For values of t he  temperature r a t i o  less than c r i t -  
i c a l ,  the  slope of t he  s teady-state  pressure-drop flow-rate curve i s  pos i t i ve .  
Hence, with a constant r a t e  of heat  input ,  t he  cha rac t e r i s t i c  pressure-drop 
flow-rate curve with laminar flow i s  U-shaped ( i . e . ,  concave upward, with a 
m i n i m u m  pressure drop occurring a t  t h e  c r i t i c a l  f l u i d  temperature r a t i o ) .  

For values 

Increases i n  the  heat addi t ion  r a t e  have been shown t o  r e s u l t  i n  other  U- 
shaped pressure-drop flow-rate curves t h a t  exhib i t  t he  following charac te r i s -  
t i c s :  f o r  a given pressure drop, the  flow r a t e  f o r  t he  l e f t  l e g  of the  U- 
shaped curve increases ,  and t h a t  f o r  t h e  r i g h t  l e g  decreases as the  heat f l ux  
i s  increased. If a s m a l l  per turbat ion i n  heat f l u x  i s  imposed, the  flow r a t e  
fo r  both l egs  tends t o  decrease.  For t h e  l e f t  l eg ,  t h i s  tendency i s  i n  oppo- 
s i t i o n  t o  the s teady-state  t rend .  These phenomena have been widely termed the  
"laminar flow i n s t a b i l i t y  problem" and w i l l  be discussed i n  more d e t a i l  i n  the 
sec t ion  GENl3RAL DISCUSSION OF PROBLEM. 
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Analytical  s tud ies  of t h e  laminar flow of gases through heated tubes have 
been made by numerous inves t iga tors ,  espec ia l ly  since the  start  of t he  devel- 
opment of nuclear rockets .  Some of these  s tud ies  a re  reported i n  references 2, 
3, and 4. I n  each case,  t h e  ana ly t i ca l  r e s u l t s  a r e  i n  agreement with the  d i s -  
cussion presented i n  t h e  preceding paragraph. 
laminar flow of helium through a heated cap i l l a ry  tube (0.012-in. i . d . )  i s  
reported i n  reference 5. With a constant e l e c t r i c a l  heat input t o  t h i s  cap i l -  
l a r y ,  t he  experimental d a t a  of reference 5 ind ica te  the  existence of two widely 
d i f f e ren t  laminar flow r a t e s  for a f ixed  value of pressure drop i n  the  cap i l -  
lary. 

An experimental study of t h e  

During nuclear rocket f l i g h t ,  two d i s t i n c t  operating periods must be ex- 
amined from the  laminar i n s t a b i l i t y  viewpoint. The f irst ,  s ta r tup ,  may not be 
of s ignif icance i f  t h e  period of low flow operation i s  t raversed rapidly.  The 
second, shutdown, may conceivably lead  t o  ser ious d i f f i c u l t i e s ,  depending on 
the method of cooling employed t o  remove a f t e rhea t .  One proposed scheme f o r  
removing the  reac tor  a f t e rhea t  involves pulse cooling; t he  use of pulses of 
appropriate s t rength  and spacing may make it possible  t o  maintain turbulen t  
flow and, hence, s t a b i l i t y .  The cost  of pulse cooling from a propel lant  stand- 
point  depends d i r e c t l y  on t h e  mission intended f o r  t h e  nuclear rocket;  whether 
or not t h i s  cost  may be prohib i t ive  cannot be s t a t ed  a t  t h i s  time. 

A second method fo r  removal of reac tor  a f t e rhea t  may involve a continuous 
flow of coolant at an average r a t e  which may be considerably smaller than t h a t  
required f o r  pulse cooling. If t h i s  scheme i s  employed, it i s  almost assured 
t h a t  a t  some time following shutdown mixed flow would e x i s t  i n  t he  reac tor  
core; t h a t  i s ,  as a r e s u l t  of f l u i d  v i scos i ty  increases  with increases  i n  
temperature, turbulent  flow would en ter  t h e  passage and laminar flow would 
leave the  passage. 

A t r a n s i t i o n  of t h i s  type (complete turbulent  flow t o  complete laminar 
flow) would be expected t o  occur gradually over a length of flow passage 
equivalent t o  several  tube diameters.  Experimental da t a  describing or defining 
the  nature of a flow t r a n s i t i o n  of t h i s  type appears t o  be lacking i n  t h e  
l i t e r a t u r e .  Consequently, t he  number of tube diameters required for a complete 
flow t r a n s i t i o n  t o  occur i n  a heated flow channel operating i n  t h e  t r a n s i t i o n  
flow regime i s  uncertain.  I n  addi t ion,  t he  value of the  l o c a l  bulk Reynolds 
number at which a flow t r a n s i t i o n  of t h i s  type begins i s  a l s o  somewhat uncer- 
t a i n .  

I n  order t o  study the  s teady-state  pressure-drop flow-rate cha rac t e r i s t i c s  
of t h i s  type of flow i n  a passage the  s i z e  of those cur ren t ly .used  i n  t h e  nu- 
c l ea r  rocket cores and f o r  f l o w  conditions an t ic ipa ted  during reac tor  a f t e r -  
heat removal, an ana ly t i ca l  parametric study w a s  conducted at the  Lewis Re- 
search Center and i s  reported i n  reference 6 .  The study i s  dependent on an 
assumed laminar-turbulent flow t r a n s i t i o n  c r i t e r ion .  For t h i s  study, flow w a s  
considered l a m i n a r  at Reynolds numbers up t o  2100 and turbulent  down t o  about 
1000. I n  other  words, a laminar flow remains laminar u n t i l  the  Reynolds 
number exce6ds 2100, and turbulent  flow remains turbulent  u n t i l  t he  f r i c t i o n  
f ac to r  i n  laminar flow i s  l a r g e r  than t h a t  i n  tu rbulen t  flow. I n  the  study 
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reported i n  reference 6, constant a x i a l  heat  input  w a s  a l so  assumed. The 
laminar-flow f r i c t i o n  f a c t o r  from the  Poiseui l le  equation (ref. 7)  and t h e  
K&rm&n-Nikuradse formulation f o r  use i n  turbulen t  flow with high film-to-bulk 
temperature r a t i o s  (ref. 7 )  were used i n  t h i s  analysis.  Since t h e  Reynolds 
number w a s  based on f i l m  propert ies ,  w a l l  temperatures had to be computed; 
these  calculat ions were based on t h e  assumption t h a t  t h e  power generated i n  
t h e  s o l i d  i s  a l l  t ransfer red  to t h e  f lu id .  Furthermore, both l amina r  and 
turbulent  hea t - t ransfer  correlat ions had to be employed. 

Calculations presented i n  ?reference 6 demonstrate t h a t  a minimum pressure 
drop always e x i s t s  i n  a mixed flow passage. The value of t he  minimum pressure 
drop increases  with heat input.  

I n  an e f f o r t  t o  study i n  more d e t a i l  t he  r a the r  uncertain t r a n s i t i o n  
region between laminar and turbulent  flow, t h a t  i s ,  t o  determine t h e  pressure- 
drop flow-rate cha rac t e r i s t i c s  and t h e  r e l a t i v e  posi t ion of t he  minimum steady- 
s t a t e  pressure drop point,  an experimental inves t iga t ion  w a s  conducted at the  
Lewis Research Center with normal hydrogen gas flowing through an e l e c t r i c a l l y  
heated 0.116-inch-diameter Nichrome-V tube. This s teady-state  single-tube t e s t  
marks only an i n i t i a l  s t ep  i n  a program of flow study through a nuclear rocket 
core. The purpose of t h i s  repor t  i s  t o  present t h e  experimental r e s u l t s  of 
the i n i t i a l  phase of t he  overa l l  program and compare these experimental r e s u l t s  
with theo re t i ca l  predict ions.  The s teady-state  operating conditions covered 
i n  t h i s  f i r s t -phase  inves t iga t ion  reported herein a re  as follows: 
olds numbers from 600 to 5400, ou t l e t - to - in l e t  gas temperature r a t i o s  from 
2.5 to about 11.0, and average heat f luxes of 0.320, 0.485, and 0.640 
Btu/(  s e c ) ( f t 2 ) .  

i n l e t  Reyn- 

To determine reproducib i l i ty  of t h e  experimental r e s u l t s ,  t e s t s  f o r  s i m i l a r  
operating conditions w e r e  run three times. Results of t h e  i n i t i a l  runs were 
reported i n  reference 8. Results from the  two s e t s  of reruns, together with 
t h e  i n i t i a l  run r e s u l t s ,  a re  presented herein.  

G E ” G  DISCUSSION OF PROBLEM 
I 

a .  
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Relative heat- 
f l u x  values / 

Steady S t a t e  

From an examination of t he  s teady-state  
-Po in t  A equations of s t a t i c  pressure-drop f o r  laminar 

flow i n  a uniformly heated flow passage, it can 
be shown t h a t  two d i f f e ren t  flow r a t e s  a re  pos- 
s i b l e  f o r  a given value of pressure-drop i n  the  
flow passage. This phenomenon i s  i l l u s t r a t e d  i n  
f igure  1, where the  pressure-drop i n  t he  flow 

----- 
passage @P i s  shown as a function of the  cool- 

heat f lux  values.  
appendix A. 

- ant  channel flow r a t e  w f o r  various r e l a t i v e  
( A l l  symbols a re  defined i n  Flow rate, w 

F igu re  1. - Static p ressu re  drop in heated flow 
passage w i t h  l am ina r  flow as f u n c t i o n  Of flow 
ra te  fo r  va r ious  relat ive heat- f lux values. A der ivat ion and general  analysis  of t he  
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equation f o r  s t a t i c  pressure drop of a n  i dea l  gas flowing i n  a constant area 
passage with constant, uniform a x i a l  heat input i s  presented i n  appendix B. 

The r e su l t i ng  s teady-state  expression f o r  s t a t i c  pressure drop i n  a con- 

(I) of appendix B) i s  
f 

s t a n t  a rea  passage with an assumed constant and uniform axial heat  input 
(eq. 

4QL 
X 

The cha rac t e r i s t i c  concave upward shape of t h e  curves i n  f igure  1 can be 
demonstrated from an ana lys i s  of equation 1. I n  appendix By  t h i s  equation i s  
analyzed, and the  following general  conclusions are  drawn: 

(1) With the  heat input t o  t h e  f l u i d  approaching zero ( i . e . ,  with Q -+ 0)  
APs,1-2 

i n  both the  laminar- and turbulent-  
such t h a t  t h e  flow i s  e s s e n t i a l l y  adiabat ic ,  the  s t a t i c  pressure drop 
i s  an increasing funct ion of flow r a t e  
flow regimes. 

$ 

( 2 )  With a constant and uniform f i n i t e  heat input t o  t h e  f l u i d ,  however, 
t he  s t a t i c  pressure drop may be e i t h e r  an increasing or decreasing funct ion of 
flow r a t e :  

(a)  For t h e  case i n  which the  flow i s  turbulent  throughout t h e  pas- 
sage ( i . e . ,  f o r  Reynolds numbers >2100) t h e  s t a t i c  pressure drop E' 
increases  w i t h  flow r a t e  w f o r  all values of heat input .  

s , l - 2  

(b )  For t he  case i n  which the  flow i s  laminar throughout t h e  passage 
decreases % , l - 2  (i .e. ,  f o r  Reynolds numbers <2100) t h e  s t a t i c  pressure-drop 

with flow rate provided t h e  heat input i s  su f f i c i en t  t o  y i e l d  an out le t - to-  
i n l e t  f l u i d  temperature r a t i o  which exceeds z 

The c r i t i c a l  f l u i d  temperature r a t i o  

c r i t  

T~~~~ 
hydrogen gas i n  a uniformly heated passage having a length and diameter approx- 
imately equal t o  a nuclear rocket core passage w a s  determined by examining 
equation (1) f o r  extreme values. 
found t o  correspond t o  a c r i t i c a l  f l u i d  temperature r a t i o  of approximately 
4.0. The procedure used t o  ca l cu la t e  t h e  c r i t i c a l  f l u i d  temperature r a t i o  
for laminar flow of normal hydrogen gas i s  described i n  appendix B. 

f o r  laminar flow of normal 

A r e l a t i v e  minimum pressure drop w a s  

The ana lys i s  presented i n  appendix B i s  considered approximate i n  nature.  
A s  pointed out, t h e  der iva t ion  of t h e  s t a t i c  pressure-drop equation (eq.  (1)) 
w a s  based on severa l  simplifying assumptions. It should a l s o  be recognized 
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t h a t  t h e  computed c r i t i c a l  f l u i d  temperature r a t i o  (of approx. 4.0) f o r  all 
laminar flow w a s  based on the  assumption t h a t  t h e  heat input w a s  constant and 
uniform along t h e  axis of t h e  passage. 
would be somewhat d i f f e r e n t  if t h e  axial heat-f lux d i s t r i b u t i o n  were nonuniform. 

It i s  expected t h a t  t h e  value of T~~~~ 

Nonsteady S t a t e  

The t r ans i en t  f a c e t  of t h e  laminar flow i n s t a b i l i t y  problem i s  t h a t  which 
appl ies  t o  the  s t a b i l i t y  of a heated flow channel to perturbat ions when oper- 
a t ing  at a point  on t h e  s teady-state  pressure-drop flow-rate curve where t h e  
slope of t he  curve i s  negative.  

With reference t o  f igure 1, it appears from the  s teady-state  pressure- 
drop r e l a t ions  t h a t  if an operating point  i s  chosen i n  t h e  regime of negative 
slope (e.g. ,  point A i n  f i g .  1) and the  heat  f l u x  i s  increased s l i g h t l y  by an 
amount dQ, the  flow r a t e  must increase i f  the  pressure-drop AP i s  fixed. 
An analysis  of t h e  t r ans i en t  behavior of a heated flow channel does not, how- 
ever, lead t o  t h i s  conclusion. 

If AP i s  f ixed  (as would be the  case i n  t h e  multichannel p a r a l l e l  flow 
system with f ixed pressure boundaries) and t h e  heat f l u x  i n  one channel of t he  
p a r a l l e l  flow system i s  increased by an amount dQ, a decrease i n  0 would be 
expected as a r e s u l t  of a decrease i n  the  average f l u i d  dens i ty  i n  t h e  flow 
pas sage. 

Results of unpublished ana ly t i ca l  s tud ies  ind ica te  t h a t  t h e  negative slope 
region of t he  s teady-state  pressure-drop flow-rate curve i s  unstable .  Pos i t ive  
per turbat ions i n  heat input have been shown t o  cause a continuous unbounded 
divergence i n  flow r a t e  from the  i n i t i a l  s t e a y - s t a t e  flow r a t e .  At the ' low 
operating heat f luxes  which a r e  associated with t h e  nuclear rocket a f te rhea t  
removal period, the  flow divergence caused by pos i t i ve  heat-flux per turbat ions 
occurs at a r e l a t i v e l y  slow r a t e  and i s  accompanied by a continuously increas-  
ing flow passage surface temperature. The calculated unbounded flow-rate 
divergence associated with pos i t ive  per turbat ions i n  heat input i s  based on 
t h e  assumptions t h a t  t h e  heat input t o  the  passage i s  constant and t h a t  heat 
conduction from t h e  passage i s  in s ign i f i can t .  

The e f f e c t  of heat interchange by conduction i n  t h e  so l id  mater ia l  of t he  
reac tor  core would tend t o  prevent a continuing increase i n  temperature i n  
those flow channels t h a t  are af fec ted  by an induced pos i t i ve  per turbat ion i n  
heat input .  

The uncertainty i n  t h e  conduction contact res i s tance  between t h e  so l id  
f u e l  modules i n  the  reac tor  core, however, makes it impossible t o  accurately 
determine the  effect iveness  of heat conduction i n  reducing t h e  magnitude of 
nonuniformities i n  temperature and flow which might r e s u l t  from t h i s  phenomenon. 

From the  previous discussion, it appears t h a t  laminar flow i n  the  passages 
of t h e  nuclear reac tor  core could present a ser ious problem, pa r t i cu la r ly  during 
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t h e  period of low power operation which follows a shutdown of t h e  nuclear rock- 
e t  reac tor .  

I n  t h e  single-passage flow experiment described i n  this report ,  t h e  
laminar-flow perturbat ion i n s e a b i l i t y  problem w a s  not encountered because of 
the r e l a t i v e l y  l a rge  flow impedance added i n t o  the  system by t h e  flow and pres- 
sure  control  valves.  The pressure lo s ses  across these  valves were r e l a t i v e l y  
l a rge  compared with the  pressure losses  i n  t h e  heated tube. A s  a r e s u l t ,  t h e  
cont ro l  valves had a s t a b i l i z i n g  influence on the flow r a t e  i n  t h e  t e s t  system. 

Since t h e  per turbat ion i n s t a b i l i t y  problem w a s  not considered as an ob jec-  
t i v e  i n  this experimental inves t iga t ion ,  no fur ther  discussion of t h a t  facet 
of t h e  problem w i l l  be  made. 

EXPERlMENTAL APPARA.TUS AND PROCEDITRE 

Te s t  A s  s emb l y  

A sketch of t h e  experimental setup i s  shown i n  f igu re  2.  The hydrogen 
gas used i n  these experiments w a s  supplied f r o m  a tube t r a i l e r ,  metered by 
ca l ibra ted  rotameters, and precooled by a l i q u i d  nitrogen heat exchanger p r io r  
t o  enter ing t h e  heated t e s t  sect ion.  The t e s t  sec t ion  f o r  these experiments 
w a s  a Nichrome-V tube with an ins ide  diameter of 0.116 inch, a w a l l  thickness 
of 0.016 inch, and a heated length  of 50 inches.  The e l e c t r i c a l  r e s i s t i v i t y  
of Nichrome-V at severa l  temperatures from 70° t o  2000° F i s  shown i n  t ab le  I. 
From an inspection of t a b l e  I, it i s  seen t h a t  t he  r e s i s t i v i t y  of Nichrome-V 
i s  l a rge  and r e l a t i v e l y  constant over a wide range of temperatures. 

Two e l e c t r i c a l  power systems were used independently t o  supply power t o  
the  t e s t  sect ion.  I n  t h e  i n i t i a l  s e t  of t e s t  runs, t h e  t e s t  sect ion w a s  heated 
by a manually control led 6-kilovolt-ampere al ternat ing-current  power supply. 
For t h e  two s e t s  of reruns,  a d i rec t -cur ren t  power supply w i t h  an automatic 
temperature feedback control  w a s  used. (It w a s  mentioned previously t h a t  th ree  
separate s e t s  of experimental da t a  were taken fo r  each operating heat f l ux .  
The primary purpose of running t h e  two addi t iona l  s e t s  of d a t a  w a s  t o  determine 
t h e  reproducib i l i ty  of t h e  experimental measurements.) 
power supply with automatic control  w a s  used t o  f a c i l i t a t e  t he  s e t t i n g  up of 
t he  required power input f o r  t h e  reruns.  The f a c t  t h a t  two d i f f e r e n t  types of 
e l e c t r i c a i  power were used (ac  and de)  should have no e f f e c t  on t h e  measured 
da ta .  

The d i rec t -cur ren t  

The approximate pos i t ions  of t h e  e l e c t r i c a l  power connections a r e  shown 
schematically i n  f igu re  2.  To reduce heat s ink e f f ec t s ,  t he  e l e c t r i c a l  power 
t a p  on the  downstream s ide  of t h e  heated t e s t  sec t ion  w a s  posit ioned j u s t  
above t h e  s t a i n l e s s - s t e e l  o u t l e t  plenum. Because of t he  l a rge  cross-sect ional  
a r ea  of t he  o u t l e t  plenum, t h e  e l e c t r i c a l  power d iss ipa ted  i n  t h e  plenum w a s  
r e l a t i v e l y  in s ign i f i can t .  
o u t l e t  plenum w a s  l e s s  than 0.1 percent of t he  e l e c t r i c a l  power input . )  The 
power t a p  at t h e  t e s t  sec t ion  i n l e t  w a s  located j u s t  above the  l i q u i d  nitrogen 
heat exchanger and approximately 1.5 inches above the  t e s t  sect ion i n l e t .  

(It w a s  estimated t h a t  t h e  power d iss ipa ted  i n  t h e  
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Absolute p ressu re  t ransducer  
Di f ferent ia l  p ressu re  t ransducer  
Thermocouple ( f l u i d  temperature) ,- P r e s s u r e  
Thermocouple (sur face  temperature) 
Ammeter 
Vol tmeter JVPI v a c u u m  pump 

r o u t l e t  
1 p l e n u m  A i r  flow - 

Figure  2. - Schematic diagram of test assembly and ins t rumenta t ion .  

TABLE I. - ELFCTRICAL RESISTIVITY OF 

NICHROME-V AT SEVEXAI- TEMPERATURFS 

[Data obtained from Driver-Harris Co. 
Technical Catalog, "58.1 

70 
200 
400 
600 
800 
1000 
1200 
1400 
1600 
1800 
2000 

I Tempe;;ture, I Resistivity, 
(ohm) (circular mils)/ft 

8 

650.0 
660.5 
674.0 
685 .O 
693 .O 
696 .O 
692 .O 
690 .O 
693 .O 
697 .O 
701 .O 

I n  order t o  minimize heat losses  by f r e e  
convection, t h e  t e s t  assembly w a s  enclosed i n  
an evacuated chamber, which w a s  maintained at 
an absolute pressure of approximately 
mill imeter of mercury. The heated f l u i d  leav- 
ing  the  t e s t  sect ion w a s  cooled by a s ingle-  
pass air-cooled heat exchanger and exhausted 
i n t o  a vacuum tank. The purpose of exhausting 
t o  t h e  vacuum tank w a s  t o  enable the  t e s t i n g  
t o  be conducted at a subatmospheric pressure 
leve l ;  t h i s  w a s  considered necessary t o  m a x -  
imize t h e  pressure drop across the  heated t e s t  
sect ion.  

Figure 3 i s  a photograph of the  t e s t  as- 
sembly showing the  pos i t ion  of the  Michrome-V 
t e s t  sec t ion  ins ide  the vacuum enclosure. 



Instrument a t  ion 

Figure 3. - Photoyraph of test assembly. 

The r e l a t i v e  loca t ions  and types of 
instrumentation used on the  t e s t  assembly a re  
indicated schematically i n  f igure  2 .  The 
hydrogen flow rate w a s  measured by two rotam- 
e t e r s ,  each having a d i f f e ren t  range, con.- 
nected i n  s e r i e s  and located i n  t h e  flow l i n e  
upstream of t h e  t e s t  sect ion.  The rotameters 
were read remotely on a closed-circui t  t e l e -  
v i s ion  rece iver .  

The Richrome-V t e s t  sect ion w a s  i n s t ru -  
mented with 36-gage (0.005-in.-diam.) i ron-  
Constantan thermocouples , which were bonded 
t o ,  and e l e c t r i c a l l y  insu la ted  from, t h e  out- 
s ide  surface of the t e s t  sect ion by a t h i n  
l aye r  of ceramic cement. A t o t a l  of 1 7  ther -  
mocouples, spaced 3 inches apar t ,  were posi-  
t ioned along the  middle 48 inches of t he  
50-inch-long heated length of tube. In  arder 
t o  minimize the  conduction e r ror  i n  t h e  w a l l  
temperature measurements , two turns  of t he  
insu la ted  thermocouple lead wires were wrapped 
around and bonded t o  t h e  surface of the  heated 
tube a t  each measurement point .  
t e s t i n g ,  however, some of these thermocouples 
became detached or f a i l e d .  A s  a r e s u l t ,  w a l l  
temperature d a t a  were not obtained f o r  each 
t e s t  run. ) 

(During t h e  

The temperature of the  hydrogen gas at t h e  i n l e t  and o u t l e t  plenums w a s  
measured by thermocouples posit ioned ins ide  the  plenums. A copper-Constantan 
thermocouple w a s  used i n  t h e  i n l e t  plenum and an iron-Constantan thermocouple, 
surrounded w i t h  a s t a i n l e s s - s t e e l  rad ia t ion  shield,  w a s  used i n  the  o u t l e t  
plenum. I n  addi t ion,  hydrogen gas temperature measurements were made with 
copper-Constantan thermocouples posit ioned i n  the  t r ans fe r  l i n e  immediately 
downstream of each rotameter. 

S t a t i c  pressure t aps  were located i n  the  plenums upstream and downstream 
of t h e  t e s t  sect ion.  The pressure at t h e  i n l e t  plenum w a s  measured with a 
transducer having a range of 1 2  pounds per square inch absolute ( f u l l - s c a l e  
range);  t h e  pressure drop across t h e  t e s t  sect ion w a s  measured with two d i f f e r -  
ent  d i f f e r e n t i a l  transducers having fu l l - sca l e  ranges of 0 . 7  and 0.3 pound per 
square inch.  Pressure measurements were also taken i n  the  t r ans fe r  l i n e  imme- 
d i a t e l y  downstream of each rotameter. The e l e c t r i c a l  power input t o  t he  t e s t  
sec t ion  w a s  determined from measurements of amperage and voltage drop across 
the  power leads .  
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Prec is ion  of Experimental Measurements 

The recording instruments used i n  t h i s  experiment were of high precis ion.  
The pressure t ransducers  (both t h e  d i f f e r e n t i a l  and absolute t ransducers)  were 
r a t ed  at +1 percent of f u l l  sca le .  The accuracy of the  thermocouples, pa r t i c -  
u l a r l y  those used to measure t h e  t e s t  sec t ion  w a l l  temperatures, i s  d i f f i c u l t  
t o  determine. It w a s  estimated, however, t h a t  e r r o r s  caused by conduction 
through t h e  thermocouple lead  wires were r e l a t i v e l y  s m a l l .  
viously,  t h e  thermocouple lead  wires were wrapped around and bonded t o  t h e  
surface of t he  tube at each measurement po in t . )  
t h e  flow r a t e s  were ca l ibra ted  with normal hydrogen gas; d a t a  poin ts  from the  
ca l ib ra t ion  were reproducible within about i1/2 percent.  
t h e  accuracy of t h e  flow r a t e  measurements were within 53 percent .  

(As  mentioned pre- 

The rotameters used t o  measure 

It i s  estimated t h a t  

The reproducib i l i ty  of t he  experimental measurement i s  not considered t o  
be a quant i ta t ive  ind ica t ion  of accuracy. Nevertheless, reproduction does 
provide a b a s i s  f o r  confidence i n  the  t e s t  r e s u l t s .  For t h e  most par t ,  t he  
reproducib i l i ty  of t h e  t e s t  da t a  w a s  reasonably good. 

Experimental Procedure 

For each s teady-state  t e s t  run, t h e  s t a t i c  pressure and temperature at the  
t e s t  sect ion i n l e t  were maintained constant at approximately 10 pounds per 
square inch absolute and 140° R, respect ively.  The required flow r a t e  f o r  each 
run and the  constant value of i n l e t  pressure w a s  es tabl ished by opening t h e  
pressure and flow cont ro l  valves to a proper s e t t i ng .  The e l e c t r i c a l  power in -  
put t o  the  t e s t  sec t ion  w a s  then adjusted ( e i t h e r  manually with t h e  ac power 
supply o r  automatically with the  de power supply) t o  give an o u t l e t  f l u i d  
temperature f o r  t h e  establ ished flow ra t e ,  which corresponded t o  a predetermined 
constant heat f l u x  value.  
equilibrium temperatures and pressures were reached f o r  t he  establ ished flow 
r a t e )  t he  experimental da t a  were recorded. For t h e  i n i t i a l  t e s t  runs, a con- 
tinuous 30-second analog recording of t he  da t a  was made f o r  each t e s t  condition. 
These da ta  were taken on an automatic frequency-modulated tape recorder,  proc- 
essed, and played back on s t r i p  char t s  by a pen-type oscil lograph. The analog 
da ta  acquis i t ion  and t h e  play-back system are  described i n  reference 9 .  
t h e  two s e t s  of  reruns,  t h e  experimental pressure measurements were recorded on 
s t r ip -cha r t  recorders,  and temperature measurements were displayed on a d i g i t a l  
voltmeter.  

When t h e  system reached steady s t a t e  ( i . e . ,  when 

For 

Experimental inves t iga t ions  were made for t h ree  nominal values of operating 
heat  f l u x  (0.320, 0.485, and 0.640 B t u / ( s e c ) ( f t 2 ) ) .  
l e t  f l u i d  temperature was maintained constant (within +lo R )  at  140' R. 
The operating conditions f o r  each of t he  th ree  nominal heat  f l u x  values were 
determined p r io r  t o  running t h e  experiments. For each nominal heat f lux,  sev- 
e r a l  values of flow r a t e  were specif ied,  and t h e  corresponding values of o u t l e t  
f l u i d  temperatures ( required to give the  nominal values of heat  f l ux )  were de- 
termined from the  following equation: 

For each t e s t  run, t he  in -  
T i  
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I n  running t h e  experiments, some d i f f i c u l t y  w a s  encountered i n  es tab l i sh ing  
t h e  exact values of the  specif ied flow r a t e s  and corresponding out$et f l u i d  
temperatures. For some of t he  t e s t  runs, the  measured values of w and T2 
were found t o  be s l i g h t l y  d i f f e ren t  from those computed p r io r  t o  t e s t ing .  
Consequently, t h e  ac tua l  values (computed by use of equation ( 2 )  from 
t h e  experimentally measured values of G and T2)  d i f fe red  s l i g h t l y  from the  
reported nominal values .  The ac tua l  Q/As values fo r  the  individual  t e s t  runs 
were determined and w i l l  be presented i n  t h e  sect ion RESULTS AND DISCUSSION. 

Q/As 

Because of heat l o s ses  from t h e  t e s t  -sect ion by r ad ia t ion  t o  t h e  enclosure, 
and, t o  a l e s s e r  extent ,  by conduction from the  i n l e t  and o u t l e t  ends of t he  
t e s t  sect ion,  t h e  e l e c t r i c a l  power input could not be used as a measure of t he  
average heat f l ux .  

PRESSURE -DROP ANALYSIS 

An estimate of the  pressure drop i n  the  heated passage w a s  made f o r  several  
of t he  experimental runs.  Since the  ax ia l  heat-flux d i s t r ibu t ions  f o r  t he  in -  
dividual  t e s t  runs were apparently nonuniform, espec ia l ly  f o r  those runs made 
at t h e  higher operating temperatures, t he  f l u i d  temperature p r o f i l e s  required 
f o r  a pressure-drop analysis  could not be computed d i r e c t l y  from equation ( 2 ) .  
(F lu id  temperature measurements were made only at t h e  i n l e t  and o u t l e t  of t h e  
t e s t  sec t ion . )  Therefore, the  experimental w a l l  temperature p ro f i l e s  ( t o  be 
discussed i n  the  sect ion RESULTS ANE DISCUSSION) were used with appropriate 
convection heat- t ransfer  r e l a t ions  t o  estimate t h e  f l u i d  temperature p r o f i l e s  
and heat-f lux p r o f i l e s  fo r  t h e  individual  t e s t  runs. 

The estimated f l u i d  temperature p r o f i l e s  were used i n  t h e  analysis  t o  
compute the  pressure drops across the  heated t e s t  sect ion f o r  these t e s t  runs.  
The procedure used t o  ca lcu la te  t h e  pressure drops consisted of dividing the  
t o t a l  t e s t  sect ion length i n t o  26 equal segments, each of length Ax, and com- 
puting the  s t a t i c  pressure drop i n  each segment of the  heated tube from i n l e t  
plenum t o  e x i t  plenum. (The t o t a l  length of t he  Nichrome-V tube, including 

I I 
2 2 t h e  1--in. entrance length,  w a s  51- in . ;  hence, @x w a s  approx. 2.0 i n . )  The 

pressure drops f o r  t h e  individual  t e s t  runs were computed from the  following 
equation: 
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The numerical operations required t o  compute t h e  pressure drops from equa- 
(Equation (3)  i s  es-  

It i s  wr i t t en  i n  a somewhat 
t i o n  (3) were performed on a high-speed d i g i t a l  computer. 
s e n t i a l l y  t h e  same as equation (B4) of appendix E. 
d i f f e r e n t  form herein as a convenience f o r  use on t h e  d i g i t a l  computing machine.) 
The flow r a t e s ,  i n l e t  f l u i d  temperatures and pressures used i n  equation (3)  were 
obtained from the  experimental measurements. 

For many of t h e  t e s t  runs analyzed, t h e  flow enter ing t h e  heated tube w a s  
tu rbulen t .  A s  a r e s u l t  of f l u i d  temperature increases  along the  tube length,  
t he  flow changed t o  laminar flow (based on l o c a l  bulk Reynolds numbers) at some 
pos i t ion  downstream of the  tube i n l e t .  

I n  t h e  analysis ,  an assumed turbulent-to-laminar flow t r a n s i t i o n  c r i t e r i o n  
w a s  used. For t h e  case of turbulent  flow enter ing  t h e  t e s t  sect ion,  ( i . e . ,  f o r  

>2100) t h e  t r a n s i t i o n  from turbulent  t o  laminar flow i n  the  heated pas- Rein le t  
sage w a s  assumed t o  occur at a pos i t ion  downstream of t h e  passage i n l e t  where 
t h e  l o c a l  bulk Reynolds number reached a value of 1000. For t h e  case of laminar 

< 2100 t h e  flow w a s  consid- 

i n  t h e  passage w a s  l e s s  than or equal to 2100. These flow t r a n s i t i o n  c r i t e r i a  
a re  the  same as those described and used i n  reference 6. A s  pointed out i n  
reference 6,  the  l o c a l  Reynolds number t r a n s i t i o n  value of 1000 fo r  turbulent-  
t o - l amina  flow w a s  a r b i t r a r i l y  assumed. 

- ) flow enter ing t h e  tes t  sec t ion  
ered laminar throughout 

i . e . ,  f o r  Reinlet 
t he  l o c a l  bulk Reynolds number a t  a l l  points  

The f r i c t i o n  f ac to r s  used i n  the  pressure-drop analysis  were computed from 
the  following r e l a t ions :  

(1) For laminar flow with moderate wall-to-bulk temperature differences 
( r e f .  10) 

A s  s t a t e d  i n  reference 10, t h e  e f f e c t s  of heat addi t ion together with 
hydraulic entrance region e f f e c t s  a re  combined i n  t h e  temperature r a t i o  term 
i n  equation ( 4 ) .  
were ignored, and t h e  Po i seu i l l e  equation f o r  isothermal laminar flow (eq. (B5)) 
w a s  used. 

I n  appendix B, these  combined e f f e c t s  on f r i c t i o n  f ac to r  f 

( 2 )  For turbulent  flow i n  long smooth tubes ( r e f .  7 )  

0.125 
0.32 
b Re 

f = 0.0014 $. ( 5 )  

Equation (5) i s  t h e  Koo expression and i s  recommended f o r  turbulent-flow 
Reynolds numbers ranging from 3X103 t o  3X1O6. Because of the  assumed t r a n s i t i o n  
c r i t e r i a ,  it w a s  necessary ( i n  some cases)  t o  use equation (5) f o r  Reynolds num- 
bers  down t o  lo3. 

The Koo expression (eq. ( 5 ) )  i s  somewhat d i f f e ren t  from the  turbulent-flow 
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f r i c t i o n  f ac to r  equation i n  appendix B. The Koo expression w a s  used i n  t h i s  
analysis  pr imari ly  because it more accurately descr ibes  t h e  f r i c t i o n  f ac to r  
curve f o r  smooth tubes at low turbulent  Reynolds numbers. The hydraulic en- 
t rance region e f f e c t s  with turbulent  flow were determined from reference 11 t o  
be r e l a t i v e l y  in s ign i f i can t  and were ignored i n  the  ana lys i s .  

For each of t h e  t e s t  runs analyzed, t h e  l o c a l  heat-f lux values and/or 
f l u i d  temperature values required t o  compute the  s t a t i c  pressure drops i n  each 
a x i a l  segment (of length  Ax) of t h e  heated passage were obtained from a simul- 
taneous solut ion of t h e  following equations: 

where x i s  t h e  dis tance from t h e  t e s t  sect ion i n l e t .  Values of the  loca l  
heat- t ransfer  coef f ic ien t  hx were computed from the  following r e l a t ions :  

(1) For laminar flow ( r e f .  12) 

+ 

Equation (8 )  w a s  developed ana ly t i ca l ly  and i s  based on an assumed constant 
a x i a l  heat input and a calculated nonparabolic f l u i d  ve loc i ty  p r o f i l e .  ( A s  
described i n  reference 13 t h e  f u l l y  developed laminar flow veloci ty  p r o f i l e  
i s  not parabolic when heat i s  added. ) 
l o c a l  l amina r - f low hea t - t ransfer  coef f ic ien ts  even though t h e  assumption of 
a constant a x i a l  heat  input  (used i n  the  development of eq. 
f u l f i l l e d  i n  t h i s  experiment. 

Equation (8)  w a s  used t o  compute 

( 8 ) )  w a s  not 

(2) For tu rbulen t  flow with moderate wall-to-bulk temperature differences 
( r e f .  7 )  

Equation ( 9 )  i s  recommended f o r  complete turbulent  flow ( i . e . ,  for Reyn- 
olds  numbers > lo4; however, equation ( 9 )  w a s  used i n  t h i s  analysis  f o r  R e p -  
o lds  numbers as low as lo3. 
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Since values of heat- t ransfer  coe f f i c i en t  i n  t h e  t r a n s i t i o n  flow regime 
have been found to vary considerably fo r  d i f f e r e n t  flow systems, t h e  use of 
equation (9 )  i n  estimating turbulen t  hea t - t ransfer  coe f f i c i en t s  a t  low turbu- 
l e n t  Reynolds numbers i s  recognized as questionable.  

The assumed turbulent  -to-laminar flow t r a n s i t i o n  c r i t e r i o n  used i n  t h e  
f r i c t i o n  f ac to r  evaluation w a s  a l s o  used i n  determining t h e  appropriate equa- 
t i o n  f o r  computing t h e  l o c a l  hea t - t ransfer  coe f f i c i en t s .  The values of w a l l  

the  individual  t e s t  runs were taken from t h e  respect ive w a l l  temperature curves. 
temperature used i n  equation ( 6 )  to compute t h e  l o c a l  heat f luxes  for 

The l o c a l  f l u i d  temperatures computed from equation ( 7 )  were used i n  equa- 
t i o n  (3) to determine t h e  s t a t i c  pressure drop i n  each of the  26 axial  flow 
segments; t h e  computed s t a t i c  pressure drop from i n l e t  t o  e x i t  of t h e  t e s t  
sec t ion  @P w a s  obtained by summing t h e  pressure drops i n  each of the  

flow segments. Pressure lo s ses  at  t h e  entrance and e x i t  of t he  tes t  sect ion 
were included i n  t h e  computed pressure drops and were estimated from the  f o l -  
lowing r e l a t ions :  

s , l - 2  

(1) For t h e  sudden contract ion entrance pressure loss  (from i n l e t  plenum 
to tube) 

2 1 I? RT1 
= 0.5 - 

entrance 144 2gP A2 
@P 

s , l  

( 2 )  For the  sudden expansion e x i t  pressure loss 

G~RT,, I L 
= 1.0 - 

@exi t  144 2gP A' 
s,2 

The pressure loss coe f f i c i en t s  i n  equations (10) and 
reference 14 .  

(from tube t o  e x i t  plenum) 

(11) 

(11) were obtained from 

Fluid proper t ies  used i n  the  computations were taken from a d i g i t a l -  
subroutine l i b r a r y  of hydrogen proper t ies .  
r e f .  15.)  
spective segments were used i n  t h e  subroutine t o  evaluate the  f l u i d  propert ies  
used i n  the  pressure drop and heat- t ransfer  equations. 

(The subroutine i s  described i n  
Local values of computed pressure and f l u i d  temperature i n  t h e  r e -  

RESULTS AND DISCUSSIOIY 

Experimental Wall Temperature Data 

Figure 4 shows experimental w a l l  temperature p r o f i l e s  f o r  several  t e s t  
runs made at each of t h e  th ree  average operating heat f luxes.  An inspect ion 
of t he  w a l l  temperature p r o f i l e s  shows t h a t  t he  a x i a l  temperature d i s t r i b u t i o n  
f o r  each of t h e  th ree  heat f luxes  becomes increasingly nonlinear at t h e  higher 
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Figure 4. - Test-section wall temperature profiles for different 
values of inlet Reynolds niimber. 

operating temperatures. Figure 4 shows 
t h a t  at t h e  higher operating temperatures 
t h e  slopes of t h e  w a l l  temperature curves 
a r e  s teep near t he  t e s t - sec t ion  i n l e t  and 
decrease along t h e  length of t h e  heated 
tube.  

Since t h e  l o c a l  slopes of t h e  w a l l  
temperature curves a re  a r e l a t i v e  indica- 
t i o n  of t h e  l o c a l  a x i a l  heat f lux,  it 
appears t h a t  f o r  those t e s t  runs made a t  
high operating temperatures (and/or low 
i n l e t  Reynolds numbers) a major port ion of 
t he  t o t a l  heat input t o  t h e  f l u i d  w a s  
added i n  the leading ha l f  of t h e  t e s t  sec- 
t i o n .  
w a l l  temperature p r o f i l e s  at t h e  higher 
operating temperatures can be a t t r i b u t e d  
pr imari ly  t o  appreciable heat l o s ses  by 
r ad ia t ion  from the  downstream port ion of 
t h e  tube surface.  Therefore, even though 
the  in tegra ted  heat input (as defined by 
eq. ( 2 ) )  w a s  e s sen t i a l ly  constant f o r  each 
t e s t  run i n  a pa r t i cu la r  heat-flux s e r i e s ,  
t h e  d i s t r ibu t ion  of heat input t o  t h e  f l u i d  
would be expected t o  be somewhat d i f f e r e n t .  

The increasing nonl inear i ty  of t he  

Axial Heat -Flux Dis t r ibu t ions  

Figure 5 shows the  calculated a x i a l  
heat-flux d i s t r ibu t ions  f o r  t h ree  of t h e  
t e s t  runs made at an average operating 
heat f l ux  of  0.640 B tu / ( sec ) ( f t ' ) .  
though the  areas under each of t h e  heat-  
f l u x  curves i n  f igure  5 a re  approximately 
the  same, t he  d i s t r ibu t ions  a re  seen t o  be 
v a s t l y  d i f f e r e n t .  The increasing nonuni- 
formity i n  heat f l u x  with increasing oper- 
a t ing  temperatures (or decreasing i n l e t  
Reynolds numbers) i s  a t t r i b u t e d  pr imari ly  
t o  s ign i f i can t  r ad ia t ion  heat l o s ses  from 
t h e  downstream end of t h e  heated t e s t  sec- 
t ion. 

Al- 

An examination of calculated heat-  
f l u x  d i s t r ibu t ions  f o r  t h e  other average 
operating heat f luxes  ind ica tes  t h a t  t h e  
d i s t r ibu t ions  i n  f igu re  5 a re  typ ica l ;  
t h a t  is ,  t h e  calculated d i s t r ibu t ions  of 

15 



I I I I1 IIIIII I 

-Ent rance 
I I  

-. 1 0 . 1  

P 

9 

4 

4 \ 

5 in. 

. 3  . 4  

A 
Q 

U 

.6 

Reynolds 
number,  

Fract ional  distance f rom upst ream p w e r  tap, x l t  

F igu re  5. - Calculated heat- f lux d is t r ibu t ions  along length of test  sect ion f o r  d i f fe ren t  values of in- 
let  Reynolds number. Average heat f lux,  -0.640 Btul(secHft2). 

heat input f o r  each operating heat f l u x  become increasingly nonuniform with in-  
creases i n  operat ing temperature. 

Experimental Pressure-Drop Flow-Rate Charac te r i s t ics  

The r e s u l t s  of t he  laminar-flow i n s t a b i l i t y  experiments a r e  presented i n  
f igu re  6 .  
t h e  heated t e s t  sec t ion  (expressed as the  product of i n l e t  pressure and s t a t i c  
pressure drop) as a funct ion of i n l e t  Reynolds number f o r  average heat-flux 
values of 0.320, 0.485, and 0.640 B t u / ( s e c ) ( f t 2 ) ,  respec t ive ly .  An inspect ion 
of the  pressure-drop curves shows t h a t  t he  pos i t ion  of t he  r e l a t i v e  minimum 
pressure drop moves upward and t o  the  r i g h t  with increasing heat f l ux .  A t  t h e  
minimum operating heat f lux,  the  r e l a t i v e  minimum pressure drop corresponds t o  
an i n l e t  Reynolds number of approximately 1800; a t  t h e  m a x i m u m  operating heat 
f lux,  t he  r e l a t i v e  minimum pressure drop corresponds t o  an i n l e t  Reynolds num- 
be r  of approximately 2300. 

The upper curves i n  f igu re  6 show the  s t a t i c  pressure drop across 

The lower curves i n  f igure  6 show the  experimental ou t l e t - to - in l e t  f l u i d  
An examination of temperature r a t i o s  as a funct ion of i n l e t  Reynolds number. 

these curves ind ica t e s  t h a t  t h e  f l u i d  temperature r a t i o  a t  t h e  point of 
of minimum pressure drop increases  from a value of 4.0 a t  t h e  minimum heat f l ux  
t o  approximately 5.5 at t h e  maximum heat f lux.  

T z / T ~  

From the  ana lys i s  presented i n  appendix B, t h e  value of T2/T1 correspond- 
ing to t h e  point of minimum pressure drop f o r  all laminar flow w a s  estimated t o  
be approximately 4 .O. 
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F lgure  6. - Exper imental  stat ic p ressure  drop a n d  exper imental  f l u i d  temper- 
a t u r e  ra t i o  against i n l e t  Reynolds n u m b e r  w i t h  heat f l u x  as a parameter. 

I n  f igu re  6,  no d i s t i n c t i o n  i s  made between t h e  data poin ts  obtained from 
t h e  i n i t i a l  s e t  of t e s t  runs and those obtained from t h e  two s e t s  of reruns.  
I n  general, no s ign i f i can t  difference w a s  observed between t h e  i n i t i a l  t e s t  run 
d a t a  and t h a t  obtained from t h e  reruns; hence, it appears t h a t  t h e  t e s t  po in ts  
are reasonably reproducible. 

A summary of t h e  measured and calculated d a t a  f o r  each t e s t  run i s  presented 
i n  t a b l e  11. 
f o r  each t e s t  run t o  be  within 13 percent of t h e  reported nominal values.  The 
procedure used i n  ca l cu la t ing  t h e  values i n  t a b l e  I1 i s  demonstrated i n  appen- 
d i x  C by a sample ca lcu la t ion .  

An inspection of t hese  da ta  shows t h e  experimental heat-flux value 
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F igure  7. - Comparison of exper imental  and cal- 
culated pressure-drop values f o r  t h r e e  oper- 
a t i n g  heat f luxes. 
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F igure  8. - Comparison of experimental and cal 
culated f l u i d  temperatures at test-section exit  
f o r  t h r e e  operating heat fluxes. 

Comparison of Experimental ancl Calcu ated Pressure Drops 

The calculated pressure drops f o r  several  t e s t  runs made at each of t h e  
th ree  operating heat f luxes  were compared with the  respect ive measured pressure- 
drop values; t h e  r e s u l t s  of t h i s  comparison a r e  shown i n  f igu re  7 .  The assump- 
t i ons ,  equations, and ana ly t i ca l  procedures employed i n  t h e  ca lcu la t ions  a re  
described i n  t he  sec t ion  PRESSURE-DROP ANALYSIS. A s  mentioned i n  t h e  sect ion 
EXPERIMENTAL A€PARATUS AND PROCEDURE, w a l l  temperature measurements were not 
obtained f o r  a l l  of t he  experimental runs because of thermocouple f a i l u r e s .  A s  
a r e s u l t ,  pressure drops f o r  all t e s t  runs could not be computed. 

Figure 7 shows tha t  with t h e  exception of a few points ,  t h e  calculated 
pressure-drop values agree w i t h  t h e  experimental values within about +lo percent.  
The d i f fe rences  between t h e  experimental and calculated pressure drops f o r  t h e  
three  d i f f e r e n t  operating heat f luxes  appear t o  follow no consis tent  pa t t e rn .  

I n  these  experiments, no measurements were taken of l o c a l  f l u i d  temper- 
a tu re s  along t h e  length  of t h e  heated passage. A s  a r e s u l t ,  t h e  calculated 
f l u i d  temperature p r o f i l e s  and heat-flux p r o f i l e s  could not be experimentally 
va l ida ted .  Fluid temperature measurements taken at t h e  e x i t  of t h e  t e s t  sec t ion  
d id ,  however, compare r a the r  c lose ly  with t h e  calculated o u t l e t  f l u i d  tempera- 
t u r e s .  

Figure 8 shows t h e  d i f fe rences  between t h e  calculated and measured values 
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of e x i t  f l u i d  temperatures f o r  t h e  t es t  runs analyzed. From f igu re  8, it i s  
seen t h a t  with t h e  exception of one of t h e  t e s t  runs, t h e  experimental and ca l -  
culated f l u i d  temperatures a t  t h e  t e s t  sec t ion  e x i t  agree within +15O R.  

I n  judging t h e  comparison between experimental and calculated pressure 
drops i n  f igu re  7, it should be reca l led  t h a t  t h e  computed pressure-drop values 
were dependent on t h e  heat- t ransfer  r e l a t i o n s  used as w e l l  as t h e  pressure drop 
r e l a t i o n s .  

Nevertheless, t h e  experimental and ca lcu la ted  values of pressure drop fo r  
t he  individual  t e s t  runs a re  reasonably close.  The d a t a  i n  f igu re  7 ind ica te  
t h a t  t h e  pressure-drop and heat- t ransfer  r e l a t i o n s  along with t h e  assumed flow 
t r a n s i t i o n  c r i t e r i o n  used i n  t h e  analysis  were reasonable. 

DISCUSSION OF TEST DATA 

Some idea  of t h e  l a rge  flow and temperature nonuniformities possible  i n  
a system of p a r a l l e l  flow passages can be seen from an examination of f igure  6. 
For example, t he  curve constructed through t h e  da t a  poin ts  f o r  t h e  average heat 
f l u x  of 0.640 B t u / ( s e c ) ( f t 2 )  shows t h a t  f o r  a value of P1 aPs,l-2 of 4.5, t he  
flow r a t e s  and/or i n l e t  Reynolds numbers t h a t  s a t i s f y  these  conditions may 
d i f f e r  by a f ac to r  of approximately four .  The corresponding o u t l e t  f l u i d  tem- 
peratures  f o r  t he  two flow r a t e s  d i f f e r  by approximately 900° R .  

The l a rge  flow and temperature differences c i t e d  i n  t h e  preceding example 
a re  based on the  assumption t h a t  each of t he  p a r a l l e l  flow passages i s  thermal- 
l y  i so l a t ed  from t h e  other  flow passages i n  t h e  system. I n  t h e  so l id  core of 
t he  nuclear rocket, t h e  magnitude of t h e  nonuniformities i n  flow and temper- 
a tu re  would be reduced by heat conduction between adjacent f u e l  c e l l s .  If t h e  
heat interchange by conduction between f u e l  c e l l s  i s  l a rge  enough to prevent 
thermal damage i n  t h e  core, the  problem of laminar-flow i n s t a b i l i t y  (as applied 
to t h e  s o l i d  core of t he  nuclear rocket)  may be of l i t t l e  s ignif icance.  The 
uncertainty i n  t h e  conduction contact res i s tance  between t h e  f u e l  c e l l s  i n  t he  
r eac to r  core makes it impossible to estimate accurately the  effect iveness  of 
r a d i a l  heat conduction i n  preventing temperature and flow m l d i s t r i b u t i o n s  of 
t he  type associated with the laminar i n s t a b i l i t y  phenomenon. 

Therefore, t h e  magnitude of possible  nonuniformities c i t e d  i n  the  preced- 
ing  example should be ca re fu l ly  in te rpre ted .  Application of these da t a  and 
conclusions drawn regarding possible  nonuniformities of temperature and flow 
among p a r a l l e l  flow passages i s  j u s t i f i e d  only where the  e f f e c t  of thermal 
coupling between channels i s  negl igible .  

CONCLUDING REMARKS 

Since gas-cooled nuclear reac tors  a re  normally designed f o r  operation i n  
t h e  turbulent  flow regime, t he  laminar-flow i n s t a b i l i t y  phenomenon reported 
herein would not appear to present a problem f o r  s teady-state  design operation. 
During t h e  s t a r tup  and shutdown of a gas-cooled reac tor ,  t h e  system flow r a t e  
must pass through t h e  laminar flow regime. I n  t h e  case of shutdown, t h e  r e -  
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ac tor  decay heat may be s u f f i c i e n t l y  l a rge  t o  requi re  cooling of t h e  core as- 
sembly f o r  r e l a t i v e l y  long periods of time. If  coolant consumption i s  t o  be 
minimized during t h e  period of a f t e rhea t  removal (as would be required for t he  
missions being considered fo r  t he  nuclear rocket) ,  it i s  necessary t h a t  t he  
flow rate be control led t o  a minimum value which would maintain t h e  core assem- 
b l y  s l i g h t l y  below t h e  maximum allowable temperature. 

The experimental da t a  presented i n  t h i s  repor t  show t h a t  a heated flow 
channel operating at steady state with a constant heat f l u x  may have two widely 
d i f f e r e n t  flow rates which y i e l d  t h e  same value of pressure drop. A s  a r e s u l t ,  
it seems reasonable t o  expect t h a t  nonuniformities of temperature and flow 
could occw i n  a system of uniformly heated p a r a l l e l  flow passages operating at 
low flow r a t e s  between f ixed pressure boundaries. 

For t he  range of t e s t  conditions invest igated,  t h e  experimental d a t a  ind i -  
ca te  t h a t  

1. The slopes of t he  curves of pressure drop against  flow r a t e  and/or 
i n l e t  Reynolds number a r e  negative f o r  ou t l e t  - t o - in l e t  f l u i d  temperature r a t i o s  
grea te r  than 5.5. 

2 .  The flow r a t e  (or i n l e t  Reynolds number) corresponding t o  t h e  point of 
minimum pressure drop increases  with increasing values of heat f l ux .  A t  t h e  
lowest heat f lux ,  t h e  r e l a t i v e  minimum pressure drop occurred at an i n l e t  
Reynolds number of approximately 1800; at t h e  highest  heat f lux ,  t he  r e l a t i v e  
minimum pressure drop occurred at an i n l e t  Reynolds number of approximately 
2300. 

Several  t e s t  runs were made a t  each average operating heat flux t o  inves- 
t i g a t e  the  reproducib i l i ty  of t he  experimental measurements. In general ,  t he  
experimental pressure-drop measurements were reproducible,  even i n  the regime 
of mixed flow. 

A comparison was made of experimental and calculated values of pressure 
drop i n  t h e  heated flow passage. Fluid temperature p r o f i l e s  required f o r  the 
pressure-drop ana lys i s  were estimated from a convection heat- t ransfer  ana lys i s  
i n  which measured values of t h e  w a l l  temperature d i s t r ibu t ions  were used. An 
assumed turbulent-to-laminar flow t r a n s i t i o n  c r i t e r i o n  w a s  used i n  t h e  pressure- 
drop hea t - t ransfer  ana lys i s  t o  compute axial f l u i d  temperature d i s t r ibu t ions  
for  those t e s t  runs having mixed flow. The agreement i n  experimental and 
calculated values of pressure drop ind ica tes  t h a t  t h e  hea t - t ransfer  and 
pressure-drop r e l a t i o n s  along with t h e  assumed flow t r a n s i t i o n  c r i t e r i o n  were 
reasonable. 

L e w i s  Research Center, 
National Aeronautics and Space Administration, 

Cleveland, O h i o ,  November 23, 1965. 
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APPENDIX A 

A 

AS 

cP 

DH 

f 

f 0  

g 

H 

hX 

k 

L 

M 

n 

p, ps 

Pr 

Q 

R 

Re 

T 

v 

X 

SYMBOLS 

flow area,  f t 2  

ins ide  surface a rea  of t e s t  sect ion,  f t 2  

spec i f i c  heat of gas at constant pressure, Btu/( lb)  ( O R )  

hydraulic diameter of t e s t  sect ion,  f t  

f r i c t i o n  f ac to r  

constant i n  f r i c t i o n  f a c t o r  equation (eq. (B5)) 

g rav i t a t iona l  constant,  f t / (  sec)Z 

enthalpy, Btu/lb 

l o c a l  hea t - t ransfer  coef f ic ien t ,  Btu/( sec)  ( f t 2 )  ( O R )  

thermal conductivity of gas, Btu/( sec)  ( f t )  (%) 

heat- t ransfer  length  of t e s t  section, f t  

exponent on temperature i n  v i scos i ty  r e l a t i o n  (eq.  (B6)) 

exponent on Reynolds number i n  f r i c t i o n  f ac to r  r e l a t i o n  (eq.  ( B 5 ) )  

s t a t i c  pressure,  p s i a  (except i n  appendix B where ps fa  i s  used) 

Prandt l  number, WC /k P 

r a t e  of heat t r a n s f e r  to gas, Btu/sec 

spec i f i c  gas l a w  constant, ft/OR 

Reynolds number, GDH/f!p 

temperature, OR 

f l u i d  veloci ty ,  f t / s e c  

weight flow r a t e ,  lb/sec 

a x i a l  d is tance f rom i n l e t  of t e s t  sect ion,  f t  

v i scos i ty ,  l b / ( f t )  ( s ee )  
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constant coef f ic ien t  i n  v i scos i ty  r e l a t i o n  (eq.  (B6)) 

ou t l e t - to - in l e t  f l u i d  temperature r a t i o ,  T2/T1 

I-10 

't 

Sub s c r i p t s  : 

ave 

b 

c r i t  

f 

w a l l  

X 

1 

2 

average 

bulk (when applied t o  f l u i d  propert ies ,  ind ica tes  evaluation based on 
bulk temperature) 

c r i t i c  a1 

f i lm (when applied t o  f l u i d  propert ies ,  ind ica tes  evaluation based on 
f i l m  temperature, Tf = (Twall f Tb)/2)  

ins ide  surface of t e s t  sec t ion  

l o c a l  value at dis tance x from t e s t - sec t ion  i n l e t  

t e s t - sec t ion  i n l e t  

t e s t - sec t ion  o u t l e t  



APPENDIX B 

APPROXIMATE CLOSED-FORM PRESSURE DROP-FLOW ANALYSIS 

Consider a heated flow channel of length L i n  which a f l u i d  flowing at  
a r a t e  en ters  t h e  channel a t  temperature Tl and pressure P1 and 
leaves t h e  channel at temperature T2. and pressure P2 as shown i n  f igu re  9. 

If changes i n  p o t e n t i a l  e n e r a  of t h e  f l u i d  
a re  neglected, t h e  s t a t i c  pressure drop across 
t h e  heated flow channel aPs,l-2 i s  given 

by t h e  following equation: 

w 

(B1) 
+ m f r i c t i o n  T1t p1 LG2 @s, 1-2 momentum = m  

I-- 
Figure 9. - Heated flow channel. If t he  f l u i d  i s  assumed t o  behave as a per- 

f e c t  gas and i f  t h e  pressure-drop i s  s m a l l  
r e l a t i v e  to t h e  i n l e t  pressure,  

Hence, equation (Bl) may be w r i t t e n  as 

The f r i c t i o n  f ac to r  f i n  equations (B3) and (B4) i s  expressed as a 
function of t h e  l o c a l  Reynolds number Re, by 

For laminar flow ( r e f .  7 ) ,  

f o  = constant = 16  

n = 1.0 
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For turbulent  flow ( r e f .  7 )  

f o  = 0.046 

n = 0.2 

The l o c a l  f l u i d  v i scos i ty  px 
temperature T by 

i s  represented as a funct ion of t h e  l o c a l  f l u i d  

Px = Po TM (136 1 
Combining equations (B4), (B5), and (B6) y ie lds  

If t h e  Mach number i n  t h e  heated channel i s  s m a l l  r e l a t i v e  t o  one, t he  s t a t i c  
temperature r i s e  of t h e  f l u i d  i s  r e l a t ed  t o  the  heat input by 

Q = ;/TzCp dT 

IP1 

Integra t ing  equation (B8) (assuming Cp constant)  and rearranging give 

Q 
1 x! T Z - T  = -  

P 

(For normal hydrogen gas,  the assumption t h a t  
a t  temperatures below about 500' R . )  

Cp i s  constant i s  r a t h e r  poor 

For a constant diameter channel, the surface a rea  for heat  t r a n s f e r  i s  

A = n D L  
S H 

Multiplying numerator and denominator of the  r igh t  
As = nDHL gives 

QJ&L 
11 T 2 - T  = -  

P 
1 AsGC 

s ide  of equation (B9) by 

(B11) 

The flow area  of a c i r c u l a r  channel i s  A = ( ~ t / 4 ) ( D , ) ~ ;  hence, 

n = ~ A / ( D ~ ) ~  

Subs t i tu t ion  of 4A/(DH)2 f o r  n i n  equation (B11) gives 

25 



T 2 - T  = 4QL 
1 

As ‘pDHC) 

(B12a)  

If t h e  heat flux i s  defined as Q/As and t h e  heat input is  assumed to be 
uniformly d i s t r i b u t e d  along t h e  length  of t h e  channel 
(&/As) = (Q/Ax)x), equation (B12a) may  be wr i t t en  

ave 

T - T 1 =  4&x 

AsCpDHe) 

The i n t e g r a l  i n  equation (B7)  i s  evaluated as follows: 

x=L 

x=o 
x= 0 

f x=L 

x=L 

x= 0 

+ 
1 AsCpDH ++l* = L” M n + 2  4Q 

Combining equations (B12a) and (B13c) y i e lds  

Subs t i tu t ing  t h e  r e s u l t  of equation (B13d) i n t o  equation (B7)  gives 

(B12-b 1 

(B13a) 

(B13b ) 

(B13c) 

(B13d) 

26 



Multiplying numerator and denominator of equation (B14) by T1, 

From equation (B6), p, = p0$; hence, 

Subs t i tu t ing  the  r e s u l t  of (B15b) i n t o  (B15a) gives 

Combining equation (B lZa)  with (B16) 
/ 

(B15a) 

(B15b ) 

Equation (1) i s  the  general  equation of t he  family of curves shown i n  f igu re  1. 

Taking t h e  p a r t i a l  der iva t ive  of APs21-2 with respect  t o  +/A at a 
constant heat f l ux  shows t h a t  a r e l a t i v e  rmnimum e x i s t s  fo r  t he  curves i n  f i g -  
ure  1. 
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Let T = T /T - then equation (B18) becomes 
2 1’ 

2fiL(3 - n)A 
0319 1 

+ Mn+2 
2flL(3 - n)A z 

+ 
DH(Mn f 2)(. - 1) DH(Mn + 2)(~ - 1) 

Simplifying equation (B19) gives 
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Combining equations (B12a) and (B20) y i e lds  

The minimum of the  curves of AP against  $/A occurs at a point s , l - 2  
where 
equation (B21) must equal zero for a m i n i m u m  t o  e x i s t .  

d ms,l-2/?l(6/A) = 0; hence, the  sm of the  terms in s ide  the  braces of 

For most gases, t he  v i scos i ty  va r i e s  with t h e  temperature t o  powers of 
l e s s  than one; t h a t  i s ,  IJ. = pol?, where M < 1.0. 

For hydrogen gas i n  t h e  range from 150° t o  1500° R,  M i s  approximately 
0.72. 

If the  f l o w  i n  the  heated passage i s  completely turbulent  (such t h a t  
n 0.2, it can be shown tha t  a ms,l_2 i s  always pos i t i ve .  

For laminar flow throughout t he  heated passage, n = 1.0 .  Assuming a r a t i o  
i n  equation ( B 2 1 )  changes from pos i t ive  t o  

Q/AS 
L/DH Of 430> a m s , l - 2  /Wfi/A) I 
value of z ( i . e . ,  t h e  value of z at which a APs,l-2/a(fi/A)\ = 0)  
negative f o r  laminas flow at  a value of z of approximately 4.0. The exact 

Q/As 
c r i t  

i s  dependent on t h e  r a t i o  
a ture ,  and the  flow r a t e .  

LIDH, t h e  heat-flux value, t h e  i n l e t  f l u i d  temper- 
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APPENDIX c 

SAMPU CALCULATION 

The following sample ca lcu la t ion  (run 30) shows t h e  procedure used t o  
obtain t h e  calculated values i n  t a b l e  11: 

I n l e t  s t a t i c  pressure,  P . , p s i a  . . . . . . . . . . . . . . . . . . . .  9.87 
SYJ- 

Inlet hydrogen gas temperature, T1, ?R . . . . . . . . . . . . . . . . . .  140 
Hydrogen gas flow rate, h, lb/sec . . . . . . . . . . . . . . . . .  
Outlet  hydrogen gas temperature, T2, ?R . . . . . . . . . . . . . . . . .  
I n l e t  t o  e x i t  s t a t i c  pressure drop, aPs,1-2, p s i  

20.91x10-6 
1004 

. . . . . . . . . . . .  0.289 

(a) Calculation of Reynolds number at t e s t  sec t ion  i n l e t  

Tube diameter 

DH = 0.116 i n .  = 9.667X10m3 f t  

Tube flow area 

A = ( ~ t / 4 ) ( 0 . 1 1 6 ) ~  = 0.010565 in.' = 7.34X10-5 f t 2  

Viscosity of normal hydrogen gas ( r e f .  15) at t e s t  sec t ion  i n l e t  

pl = 2.3X10-6 l b / ( f t ) ( s e c )  

I n l e t  Reynolds number 

.cjDH - ( 20. 9u<10-6) ( 9. 667X10-3) 

m1 
Reinlet  = - - 

( 7 . 3 4 ~ 1 0 - ~ )  ( 2 .  3X10-6) 

I n l e t  Reynolds number 

Reinlet  1200 

(b )  Calculation of average heat f l u x  

Surface a rea  of tube 

A = fiD$ = Tt(0'u6)(50) E 0.1265 f t 2  
S 144 

Rate of heat t r ans fe r  to f l u i d  
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From reference 15 

H2 = f ( T Z ,  Pz) = 3425 Btu/lb 

H = f ( T  P ) = 573 Btu/lb 1 1' 1 
Rate of heat t r a n s f e r  t o  f l u i d  

Q = 20.91X10-6 (3425-573) = 5.955X10m2 Btu/sec 

Average heat f l u x  

- -  ' - 5.955x10-2 = 0.472 B t u / ( s e c ) ( f t 2 )  
0.1265 

AS 

( c )  Calculation of Reynolds number at t e s t  sec t ion  ou t l e t  

Viscosi ty  of normal hydrogen gas ( r e f .  15 )  at t e s t  sect ion ou t l e t  

= 9.1X10-6 l b / ( f t ) ( s e c )  % 

- IJ-1 

i-L2 
- R e i f l e t  - Re out 1 e t  

2.3X10-6 ~ 3oo = 1200 
9 .1x10-6 Re out 1 e t  

(d )  Calculation of f l u i d  temperature r a t i o  

Fluid temperature r a t i o  

( e )  Calculation of pressure-drop parameter 

= (9.87)(0.289) = 2 .85(ps i a ) (ps i )  
p1 % , l - Z  

I 
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